Микроорганизмы используются в промышленном производстве витаминов. Объекты биотехнологии

Процессы, протекающие при участии бактерий, дрожжей и плесневых грибов, человек применял сотни лет для получения пищевых продуктов и напитков, обработки текстиля и кожи, но участие в этих процессах микроорганизмов было четко показано только в середине 19 в.

В 20 в. промышленность использовала все разнообразие замечательных биосинтетических способностей микроорганизмов, и теперь ферментация занимает центральное место в биотехнологии. С ее помощью получают разнообразные химикалии высокой степени чистоты и лекарственные препараты , изготавливают пиво , вино , ферментированные пищевые продукты. Во всех случаях процесс ферментации разделяется на шесть основных этапов.

Создание среды.

Прежде всего необходимо выбрать соответствующую культуральную среду. Микроорганизмы для своего роста нуждаются в органических источниках углерода, подходящем источнике азота и различных минеральных веществах. При производстве алкогольных напитков в среде должны присутствовать осоложенный ячмень, выжимки из фруктов или ягод. Например, пиво обычно делают из солодового сусла, а вино – из виноградного сока. Помимо воды и, возможно, некоторых добавок эти экстракты и составляют ростовую среду.

Среды для получения химических веществ и лекарственных препаратов намного сложнее. Чаще всего в качестве источника углерода используют сахара и другие углеводы, но нередко масла и жиры, а иногда углеводороды. Источником азота обычно служат аммиак и соли аммония, а также различные продукты растительного или животного происхождения: соевая мука, соевые бобы, мука из семян хлопчатника, мука из арахиса, побочные продукты производства кукурузного крахмала, отходы скотобоен, рыбная мука, дрожжевой экстракт. Составление и оптимизация ростовой среды являются весьма сложным процессом, а рецепты промышленных сред – ревниво оберегаемым секретом.

Стерилизация.

Среду необходимо стерилизовать, чтобы уничтожить все загрязняющие микроорганизмы. Сам ферментер и вспомогательное оборудование тоже стерилизуют. Существует два способа стерилизации: прямая инжекция перегретого пара и нагревание с помощью теплообменника. Желаемая степень стерильности зависит от характера процесса ферментации. Она должна быть максимальной при получении лекарственных препаратов и химических веществ. Требования же к стерильности при производстве алкогольных напитков менее строгие. О таких процессах ферментации говорят как о «защищенных», поскольку условия, которые создаются в среде, таковы, что в них могут расти только определенные микроорганизмы. Например, при производстве пива ростовую среду просто кипятят, а не стерилизуют; ферментер также используют чистым, но не стерильным.

Получение культуры.

Прежде чем начать процесс ферментации, необходимо получить чистую высокопродуктивную культуру. Чистые культуры микроорганизмов хранят в очень небольших объемах и в условиях, обеспечивающих ее жизнеспособность и продуктивность; обычно это достигается хранением при низкой температуре. Ферментер может вмещать несколько сотен тысяч литров культуральной среды, и процесс начинают, вводя в нее культуру (инокулят), составляющей 1–10% объема, в котором будет идти ферментация. Таким образом, исходную культуру следует поэтапно (с пересеваниями) растить до достижения уровня микробной биомассы, достаточного для протекания микробиологического процесса с требуемой продуктивностью.

Совершенно необходимо все это время поддерживать чистоту культуры, не допуская ее заражения посторонними микроорганизмами. Сохранение асептических условий возможно лишь при тщательном микробиологическом и химико-технологическом контроле.

Рост в промышленном ферментере (биореакторе).

Промышленные микроорганизмы должны расти в ферментере при оптимальных для образования требуемого продукта условиях. Эти условия строго контролируют, следя за тем, чтобы они обеспечивали рост микроорганизмов и синтез продукта. Конструкция ферментера должна позволять регулировать условия роста – постоянную температуру, pH (кислотность или щелочность) и концентрацию растворенного в среде кислорода.

Обычный ферментер представляет собой закрытый цилиндрический резервуар, в котором механически перемешиваются среда и микроорганизмы. Через среду прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника. Такой ферментер с перемешиванием используется в тех случаях, когда ферментативный процесс требует много кислорода. Некоторые продукты, напротив, образуются в бескислородных условиях, и в этих случаях используются ферментеры другой конструкции. Так, пиво варят при очень низких концентрациях растворенного кислорода, и содержимое биореактора не аэрируется и не перемешивается. Некоторые пивовары до сих пор традиционно используют открытые емкости, но в большинстве случаев процесс идет в закрытых неаэрируемых цилиндрических емкостях, сужающихся книзу, что способствует оседанию дрожжей.

В основе получения уксуса лежит окисление спирта до уксусной кислоты бактериями Acetobacter . Процесс ферментации протекает в емкостях, называемых ацетаторами, при интенсивной аэрации. Воздух и среда засасываются вращающейся мешалкой и поступают на стенки ферментера.

Выделение и очистка продуктов.

По завершении ферментации в бульоне присутствуют микроорганизмы, неиспользованные питательные компоненты среды, различные продукты жизнедеятельности микроорганизмов и тот продукт, который желали получить в промышленном масштабе. Поэтому данный продукт очищают от других составляющих бульона. При получении алкогольных напитков (вина и пива) достаточно просто отделить дрожжи фильтрованием и довести до кондиции фильтрат. Однако индивидуальные химические вещества, получаемые путем ферментации, экстрагируют из сложного по составу бульона. Хотя промышленные микроорганизмы специально отбираются по своим генетическим свойствам так, чтобы выход желаемого продукта их метаболизма был максимален (в биологическом смысле), концентрация его все же мала по сравнению с той, которая достигается при производстве на основе химического синтеза. Поэтому приходится прибегать к сложным методам выделения – экстрагированию растворителем, хроматографии и ультрафильтрации.

Переработка и ликвидация отходов ферментации.

При любых промышленных микробиологических процессах образуются отходы: бульон (жидкость, оставшаяся после экстракции продукта производства); клетки использованных микроорганизмов; грязная вода, которой промывали установку; вода, применявшаяся для охлаждения; вода, содержащая в следовых количествах органические растворители, кислоты и щелочи. Жидкие отходы содержат много органических соединений; если их сбрасывать в реки, они будут стимулировать интенсивный рост естественной микробной флоры, что приведет к обеднению речных вод кислородом и созданию анаэробных условий. Поэтому отходы перед удалением подвергают биологической обработке, чтобы уменьшить содержание органического углерода.

ПРОМЫШЛЕННЫЕ МИКРОБИОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Промышленные микробиологические процессы можно разбить на 5 основных групп: 1) выращивание микробной биомассы; 2) получение продуктов метаболизма микроорганизмов; 3) получение ферментов микробного происхождения; 4) получение рекомбинантных продуктов; 5) биотрансформация веществ.

Микробная биомасса.

Микробные клетки сами по себе могут служить конечным продуктом производственного процесса. В промышленном масштабе получают два основных типа микроорганизмов: дрожжи, необходимые для хлебопечения, и одноклеточные микроорганизмы, используемые как источник белков, которые можно добавлять в пищу человека и животных. Пекарские дрожжи выращивали в больших количествах с начала 20 в. и использовали в качестве пищевого продукта в Германии во время Первой мировой войны.

Однако технология производства микробной биомассы как источника пищевых белков была разработана только в начале 1960-х годов. Ряд европейских компаний обратили внимание на возможность выращивания микробов на таком субстрате, как углеводороды, для получения т.н. белка одноклеточных организмов (БОО). Технологическим триумфом было получение продукта, добавляемого в корм скоту и состоящего из высушенной микробной биомассы, выросшей на метаноле. Процесс шел в непрерывном режиме в ферментере с рабочим объемом 1,5 млн. л. Однако в связи с ростом цен на нефть и продукты ее переработки этот проект стал экономически невыгодным, уступив место производству соевой и рыбной муки. К концу 80-х годов заводы по получению БОО были демонтированы, что положило конец бурному, но короткому периоду развития этой отрасли микробиологической промышленности. Более перспективным оказался другой процесс – получение грибной биомассы и грибного белка микопротеина с использованием в качестве субстрата углеводов.

Продукты метаболизма.

После внесения культуры в питательную среду наблюдается лаг-фаза, когда видимого роста микроорганизмов не происходит; этот период можно рассматривать как время адаптации. Затем скорость роста постепенно увеличивается, достигая постоянной, максимальной для данных условий величины; такой период максимального роста называется экспоненциальной, или логарифмической, фазой. Постепенно рост замедляется, и наступает т.н. стационарная фаза. Далее число жизнеспособных клеток уменьшается, и рост останавливается.

Следуя описанной выше кинетике, можно проследить за образованием метаболитов на разных этапах. В логарифмической фазе образуются продукты, жизненно важные для роста микроорганизмов: аминокислоты, нуклеотиды, белки, нуклеиновые кислоты, углеводы и т.д. Их называют первичными метаболитами.

Многие первичные метаболиты представляют значительную ценность. Так, глутаминовая кислота (точнее, ее натриевая соль) входит в состав многих пищевых продуктов; лизин используется как пищевая добавка; фенилаланин является предшественником заменителя сахара аспартама. Первичные метаболиты синтезируются природными микроорганизмами в количествах, необходимых лишь для удовлетворения их потребностей. Поэтому задача промышленных микробиологов состоит в создании мутантных форм микроорганизмов – сверхпродуцентов соответствующих веществ. В этой области достигнуты значительные успехи: например, удалось получить микроорганизмы, которые синтезируют аминокислоты вплоть до концентрации 100 г/л (для сравнения – организмы дикого типа накапливают аминокислоты в количествах, исчисляемых миллиграммами).

В фазе замедления роста и в стационарной фазе некоторые микроорганизмы синтезируют вещества, не образующиеся в логарифмической фазе и не играющие явной роли в метаболизме. Эти вещества называют вторичными метаболитами. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии. Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам. Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи – ростовыми факторами, многие обладают фармакологической активностью. Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.

Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты. Вначале целью скрининга было получение новых антибиотиков, но вскоре обнаружилось, что микроорганизмы синтезируют и другие фармакологически активные вещества. В течение 1980-х годов было налажено производство четырех очень важных вторичных метаболитов. Это были: циклоспорин – иммунодепрессант, используемый в качестве средства, предотвращающего отторжение имплантированных органов; имипенем (одна из модификаций карбапенема) – вещество с самым широким спектром антимикробного действия из всех известных антибиотиков; ловастатин – препарат, снижающий уровень холестерина в крови; ивермектин – антигельминтное средство, используемое в медицине для лечения онхоцеркоза, или «речной слепоты», а также в ветеринарии.

Ферменты микробного происхождения.

В промышленных масштабах ферменты получают из растений, животных и микроорганизмов. Использование последних имеет то преимущество, что позволяет производить ферменты в огромных количествах с помощью стандартных методик ферментации. Кроме того, повысить продуктивность микроорганизмов несравненно легче, чем растений или животных, а применение технологии рекомбинантных ДНК позволяет синтезировать животные ферменты в клетках микроорганизмов. Ферменты, полученные таким путем, используются главным образом в пищевой промышленности и смежных областях. Синтез ферментов в клетках контролируется генетически, и поэтому имеющиеся промышленные микроорганизмы-продуценты были получены в результате направленного изменения генетики микроорганизмов дикого типа.

Рекомбинантные продукты.

Технология рекомбинантных ДНК, более известная под названием «генная инженерия», позволяет включать гены высших организмов в геном бактерий. В результате бактерии приобретают способность синтезировать «чужеродные» (рекомбинантные) продукты – соединения, которые прежде могли синтезировать только высшие организмы. На этой основе было создано множество новых биотехнологических процессов для производства человеческих или животных белков, ранее недоступных или применявшихся с большим риском для здоровья. Сам термин «биотехнология» получил распространение в 1970-х годах в связи с разработкой способов производства рекомбинантных продуктов. Однако это понятие гораздо шире и включает любой промышленный метод, основанный на использовании живых организмов и биологических процессов.

Первым рекомбинантным белком, полученным в промышленных масштабах, был человеческий гормон роста. Для лечения гемофилии используют один из белков системы свертывания крови, а именно фактор VIII. До того как были разработаны методы получения этого белка с помощью генной инженерии, его выделяли из крови человека; применение такого препарата было сопряжено с риском заражения вирусом иммунодефицита человека (ВИЧ).

Долгое время сахарный диабет успешно лечили с помощью инсулина животных. Однако ученые полагали, что рекомбинантный продукт будет создавать меньше иммунологических проблем, если его удастся получать в чистом виде, без примесей других пептидов, вырабатываемых поджелудочной железой. Кроме того, ожидалось, что число больных диабетом будет со временем увеличиваться в связи с такими факторами, как изменения в характере питания, улучшение медицинской помощи беременным, страдающим диабетом (и как следствие – повышение частоты генетической предрасположенности к диабету), и, наконец, ожидаемое увеличение продолжительности жизни больных диабетом. Первый рекомбинантный инсулин поступил в продажу в 1982, а к концу 1980-х годов он практически вытеснил инсулин животных.

Многие другие белки синтезируются в организме человека в очень небольших количествах, и единственный способ получать их в масштабах, достаточных для использования в клинике, – технология рекомбинантных ДНК. К таким белкам относятся интерферон и эритропоэтин. Эритропоэтин совместно с миелоидным колониестимулирующим фактором регулирует процесс образования клеток крови у человека. Эритропоэтин используется для лечения анемии, связанной с почечной недостаточностью, и может найти применение как средство, способствующее повышению уровня тромбоцитов, при химиотерапии раковых заболеваний.

Разнообразие микроорганизмов. Биотехнология молочных продуктов. Экологическая биотехнология.

Микробиологический синтез различных веществ играет ключевую роль в биотехнологическом производстве. Начало современной промышленной микробиологии было положено в 40 – х годах, когда наладили производство пенициллинов методами ферментации. В настоящее время микроорганизмы продуцируют десятки видов соединений - аминокислот, антибиотиков, белков, витаминов, липидов, нуклеиновых кислот, полисахаридов, пигментов, сахаров, ферментов и т. д.

К многообразному миру микроорганизмов относятся прокариоты (одноклеточные организмы, не содержащие оформленных ядер) - бактерии, актиномицеты, риккетсии низшие эукариоты (одноклеточные и многоклеточные организмы, имеющие сформированные ядра, в которых хромосомы окружены специальной пористой мембраной (липопротеидной природы), - дрожжи, нитчатые грибы, простейшие и водоросли. Из более 100 тыс. видов известных в природе микроорганизмов в биотехнологических процессах используют всего несколько сотен. Микробиологическая промышленность предъявляет к продуцентам жесткие требования, которые важны для технологии производства: высокая скорость роста, использование для жизнедеятельности дешевых субстратов и Устойчивость к заражению посторонней микрофлорой.

Биотехнология молочных продуктов .

Спектр продуктов питания, получаемых при помощи микроорганизмов обширен. Это продукты, получаемые в результате брожения - хлеб, сыр, вино, пиво, творог и так далее. До недавнего времени биотехнология использовалась в пищевой промышленности с целью усовершенствования освоенных процессов и более умелого использования микроорганизмов, но будущее здесь принадлежит генетическим исследованиям по созданию более продуктивных штаммов для конкретных нужд, внедрению новых методов в технологии брожения

Получение молочных продуктов в пищевой промышленности построена процессах ферментации. Основой биотехнологии молочных продуктов является молоко. Молоко (секрет молочных желез) – уникальная естественная питательная среда. Она содержит 82 – 88 % воды и 12 – 18 % сухого остатка. В состав сухого молочного остатка входят белки (3,0 - 3,2 %), жиры (3,3 - 6,0 %), углеводы (молочный сахар лактоза - 4,7 %), соли (0,9 – 1 %), минорные компоненты (0,01 %): ферменты, иммуноглобулины, лизоцим и т. д. Молочные жиры очень разнообразны по своему составу. Основные белки молока - альбумин, казеин. Благодаря такому составу молоко представляет собой прекрасный субстрат для развития микроорганизмов. В сквашивании молока обычно принимают участие стрептококки и молочнокислые бактерии . Путем использования реакций, которые сопутствуют главному процессу сбраживания лактозы получают и другие продукты переработки молока: сметаны, йогурт, сыр и т. д. Свойства конечного продукта зависят от характера и интенсивности реакций ферментации. Те реакции, которые сопутствуют образованию молочной кислоты, определяют обычно особые свойства продуктов. Например, вторичные реакции ферментации, идущие при созревании сыров, определяют вкус отдельных их сортов. В таких реакциях принимают участие пептиды, аминокислоты и жирные кислоты, находящиеся в молоке.



Микрозим. Экологическая биотехнология .

В природе, не подвергающейся вмешательству человека, экосистема настроена на самоочищение, т. е. природа сама справляется с переработкой более не нужного ей (мертвого) органического материала. В утилизации органики участвует почва, содержащая естественную биоту (микроорганизмы, эдафон) – живой компонент, представленный разнообразными представителями растительного и животного мира. В одном грамме садовой почвы содержатся десятки миллионов микроорганизмов - сапрофитов, актеномицетов , грибков, олигонитрофилов, азотобактеров и клубеньковых бактерий, бактерий разлагающих клетчатку, аммонификаторов, нитрификаторов, денитрификаторов, анаэробных фиксаторов азота. Вместе микроорганизмы составляют микрофлору почвы отвечающую за метаболизм в результате которого мертвая органика перерабатывется в плодородный гумус. Деятельность человека оказывает на окружающую среду мощное техногенное воздействие в частности загрязнением почвы и воды отходами производств и жизнедеятельности, где значительную долю занимают органические загрязнители. В результате загрязнений почвы и воды органическими веществами подавляется естественная биота, меняются соотношения между отдельными группами микроорганизмов и в целом изменяется направление метаболизма, нарушаются естественные процессы самоочищения. В районах постоянных загрязнений почвенная микрофлора в субстратах загрязнителях насчитывает, не более нескольких тысяч КОЕ на 100 граммов субстрата, одни группы микроорганизмов сохраняют присутствие, в то время как количество других критически уменьшается, нарушаются процессы почвообразования, в почве и воде накапливаются не разлагаемые отходы. В загрязненной экосистеме с подавленной полезной микрофлорой развиваются вредные и патогенные микроорганизмы – в водоемах загрязненных питательными элементами азота и фосфора стремительно развиваются опасные для экологии водоема сине – зеленые водоросли вызывающие отравление воды и заморы. Техногенные и антропогенные нарушения экологического баланса изменяют санитарное состояние в месте их образования, ухудшают условия обитания людей.



Разработка наиболее рациональных приемов использования микробов в хозяйственной деятельности человека и сознательная селекция микробов стали возможны только после разработки микроскопических методов изучения и выяснения способов расселения и размножения микроорганизмов. Пути возникновения микробов с повышенной устойчивостью или с пониженными требованиями к питательным веществам как в природных условиях под влиянием естественного отбора, так и в искусственных условиях в результате деятельности селекционеров, имеют очень важное практическое значение. Человек заинтересован получить как можно быстрее полезные формы микробов. Интенсивность естественного отбора сильно влияет на быстроту появления устойчивых форм и чем более жесток этот отбор, тем быстрее выявляются устойчивые формы. При помощи ступенчатой селекции получают новые штаммы микроорганизмов, способные расти и давать высокую продуктивность в условиях экологического загрязнения. Новые высокоэффективные штаммы могут выделяться из окружающей среды, например из естественных и техногенных биотопов, загрязненных территорий и очистных сооружений, а также получаться путем направленной селекции.

Многие экологически опасные загрязнители представляют собой сложные органические вещества. Для их переработки микроорганизмы синтезируют во внешнюю среду ферменты – особые белковые биоактивные вещества, выполняющие ключевую роль в разрушении сложных органических субстратов: целлюлозы, лигнина, крахмалов, липидов, углеводородов, до простых молекулярных структур, свободно поглощаемых и минерализуемых бактериями или другими микроорганизмами, например, грибами. Биотехнология использует эту способность микроорганизмов и бактерий в частности в применении к конкретным экологическим задачам.

Использование микроскопических почвенных обитателей для биологической утилизации органических отходов и нейтрализации загрязнителей получила название биоремедиации (bio - жизнь, remedio - лечение). В очищаемую среду или в утилизируемые отходы вносятся высокие концентрации специально отобранных различных видов микроорганизмов, составляющих сообщество, которые ранее были выделены из почвы, селекционированы и размножены в форме готового к применению препарата.

В результате в нужном месте в нужное время целенаправленно создается полезная микробиологическая активность заключенная в усвоении и переработке микробами мертвой органики в продукты метаболизма: углекислый газ (диоксид углерода, СО2), воду (H2O), метан (СH4), гумус, различные формы азота (от минеральной до газообразной). Подобные меры позволяют с высокой эффективностью нейтрализовать угнетающее действие загрязнителей на естественные процессы самоочищения почвы и воды, стимулировать микробиологический метаболизм, активизировать соответствующую аборигенную микрофлору и естественные процессы cамоочищения, почвообразования, дыхания.

К преимуществам биоремедиации относят возможность целенаправленного и дозированного применения технологии в нужном месте в нужное время, достаточно высокая скорость и экологически существенная эффективность усвоения и переработки микроорганизмами органических отходов и загрязнений, технологически заданные характеристики процессов очистки или переработки, экологическая и гигиеническая безопасность. Например, биологическая очистка сточных вод использует биотехнологию в тех случаях когда определенные содержащиеся в стоках вещества не поддаются биологической деградации хлопьями активного ила.

Тогда на помощь приходят специально отобранные микроорганизмы способные эффективно разрушать сложный загрязнитель, например жиры, полимеры, до молекулярных структур не вредящих активному илу очистных сооружений.

Биоремедиация – биологическая очистка почвы и воды от загрязнения нефтью и нефтепродуктами основана на способности микроорганизмов постепенно метаболизировать сложные нефтяные углеводороды с получением более простых молекулярных углеводородных структур до их полной нейтрализации как экологически опасного загрязнителя.

Утилизация и обезвреживание фекалий , очистка хозфекальных стоков основаны на способности микроорганизмов метаболизировать органические вещества входящие в состав фекалий и подавлять рост патогенной микрофлоры за счет конкуренции за источник питания. Уничтожение запахов, эффект деодоризации основан сразу на нескольких способностях бактерий метаболизировать пахнущие летучие органические соединения или предотвращать их образование, метаболизировать жирные кислоты.

Получение газа метан (биогаз) из органических отходов напрямую зависит от жизнедеятельности метаногенных микроорганизмов. Биотехнология при этом тесно взаимодействует с экологическим инжинирингом. Например, биологическая реабилитация водных объектов in situ (рассмотрение явления именно в месте, где оно происходит, то есть без перемещения в спец.среду) основана на теории практике роли сообществ бактерий и микроорганизмов в целом биологической экосистемы водоема, трофических взаимосвязей водной экосистемы.

Из более чем 100 тыс. известных микроорганизмов в промышленности применяются всего несколько сотен видов, так как промышленный штамм должен отвечать ряду строгих требований:

1) расти на дешевых субстратах;

2) обладать высокой скоростью роста или давать высокий выход продукта за короткое время;

3) проявлять синтетическую активность в сторону желаемого про-дукта; образование побочных продуктов должно быть низким;

4) быть стабильным в отношении продуктивности и к требованиям условий культивирования;

5) быть устойчивым к фаговым и другим типам инфекций;

6) быть безвредным для людей и окружающей среды;

7) желательны термофильные, ацидофильные (или алкофильные) штаммы, поскольку с ними легче поддерживать стерильность в производстве;

8) интерес представляют анаэробные штаммы, так как аэробные создают трудности при культивировании – требуют аэрирования;

9) образуемый продукт должен иметь экономическую ценность и легко выделяться.

На практике применяются штаммы четырех групп микроорганизмов:

– дрожжи;

– мицелиальные грибы (плесени);

– бактерии;

– аскомицеты.

Термин «дрожжи» в строгом смысле не имеет таксономического значения. Это одноклеточные эукариоты, относящиеся к трем классам: Ascomycetes, Basidiomycetes, Deuteromycetes.

К аскомицетам относят, прежде всего, Saccharomyces cerevisiae, определенные штаммы которого используются в пивоварении, виноделии, производстве хлеба, этилового спирта.

Аскомицеты Saccharomyces lipolytica деградируют углеводороды нефти и употребляются для получения белковой массы.

Дейтеромицет Candida utilis используют как источник белка и витаминов и выращивают на непищевом сырье: сульфитных щелоках, гидролизатах древесины и жидких углеводородах.

Дейтеромицет Trichosporon cutaneum окисляет многие органические соединения, в том числе токсичные (например, фенол), и используется при переработке стоков.

Мицелиальные грибыиспользуют:

– в получении органических кислот: лимонной (Aspergillus niger), глюконовой (Aspergillus niger), итаконовой (Aspergillus terreus), фурмаровой (Rhizopus chrysogenum);

– в получении антибиотиков (пенициллина и цефаллоспорина);

– в производстве специальных видов сыров: камамбера (Penicillium camamberti), рокфора (Penicillium roqueforti);

– вызывают гидролиз в твёрдых средах: в рисовом крахмале при получении сакэ, в соевых бобах при получении темпеха, мисо.

Полезные бактерии относятся к эубактериям.

Промышленное применение с давних времен имеют молочнокислые бактерии родов Lactobacillus, Leuconostoc, Lactococcus.

Уксуснокисные бактерии родов Acetobater, Gluconobacter превращают этанол в уксусную кислоту.

Бактерии рода Bacillus используются для производства вредных для насекомых токсинов, а также для синтеза антибиотиков и аминокислот.

Бактерии рода Corynebacterium используются для производства аминокислот.

Из актиномицетов наиболее представительными являются рода Streptomyces и Micromonospora, используемые в качестве продуцентов антибиотиков. При росте на твердых средах актиномицеты образуют тонкий мицелий с воздушными гифами, которые дифференцируются в цепочки конидиоспор.

В настоящее время с помощью микроорганизмов синтезируют следующие соединения:

– алкалоиды,

– аминокислоты,

– антибиотики,

– антиметаболиты,

– антиоксиданты,

– белки,

– витамины,

– гербициды,

– ингибиторы ферментов,

– инсектициды,

– ионофоры,

– коферменты,

– липиды,

– нуклеиновые кислоты,

– нуклеотиды и нуклеозиды,

– окислители,

– органические кислоты,

– пигменты,

– поверхностно-активные вещества,

– полисахариды,

– противоглистные агенты,

– противоопухолевые агенты,

– растворители,

– ростовые гормоны растений,

– сахара,

– стерины и превращенные вещества,

– факторы транспорта железа,

– фармакологические вещества,

– ферменты,

– эмульгаторы.

2 ПРОИЗВОДСТВО БЕЛКОВ ОДНОКЛЕТОЧНЫХ

ОРГАНИЗМОВ

^

2.1 Целесообразность использования микроорганизмов для

производства белка

В соответствии с нормами питания человек должен ежедневно получать с пищей от 60 до 120 г полноценного белка.

Для поддержания жизненных функций организма, построения клеток и тканей необходим постоянный синтез различных белковых соединений. Если растения и большинство микроорганизмов способны синтезировать все аминокислоты из углекислого газа, воды, аммиака и минеральных солей, то человек и животные не могут синтезировать некоторые аминокислоты (валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин). Эти аминокислоты называются незаменимыми. Они должны поступать с пищей. Их недостаток вызывает тяжелые заболевания человека и понижает продуктивность сельскохозяйственных животных.

В настоящее время мировой дефицит белка составляет около 15 млн.т. Наиболее перспективен микробиологический синтез. Если для крупного рогатого скота требуется 2 месяца для удвоения белковой массы, для свиней – 1,5 месяца, для цыплят – 1 месяц, то для бактерий и дрожжей – от 1 до 6 часов. Мировое производство пищевых белковых продуктов за счет микробного синтеза составляет более 15 тыс. т в год.

Рассмотрим пример: время удвоения кишечной палочки составляет 20 мин, тогда через 20 мин из одной клетки образуется две дочерних, через 40 мин – четыре «внучки», через 60 мин – восемь «правнучек», через 80 мин – 16 «праправнучек». Через 10 ч 40 мин из одной бактерии будет образовано свыше 6 млрд. бактерий, что соответствует населению Земли, а через 44 ч из одной бактерии массой 1 10 -12 г образуется биомасса в количестве 6 10 24 г, что соответствует массе Земли.

Использование различных микроорганизмов в качестве источников белка и витаминов обусловлено следующими факторами:

А) возможностью использования для культивирования микроорганизмов разнообразных химических соединений, в том числе отходов производств;

Б) относительно несложной технологией производства микроорганизмов, которое может осуществляться круглогодично; возможностью его автоматизации;

В) высоким содержанием белка (до 60…70 %) и витаминов, а также углеводов, липидов в микробиальных препаратах;

Г) повышенным содержанием незаменимых аминокислот по сравнению с растительными белками;

Д) возможностью направленного генетического влияния на химический состав микроорганизмов в целях совершенствования белковой и витаминной ценности продукта.

Для промышленного производства пищевых продуктов на основе микроорганизмов необходимы тщательные медико-биологические исследования. Такие продукты должны пройти всестороннюю проверку для выявления канцерогенного, мутагенного, эмбриотропного действия на организм человека и животных. Токсикологические исследования, усвояемость продуктов микробного синтеза – основные критерии целесообразности технологии их производства.

Для получения белков используются дрожжи, бактерии, водоросли и мицелиальные грибы.

Преимуществом дрожжей перед другими микроорганизмами является их технологичность: устойчивость к инфекциям, легкость отделения от среды благодаря крупным размерам клеток. Они способны накапливать до60 % белка, богатого лизином, треонином, валином и лейцином (этих аминокислот мало в растительных кормах). Массовая доля нуклеиновых кислот составляет до 10 %, что вредно действует на организм. В результате их гидролиза образуется много пуриновых оснований, превращающихся затем в мочевую кислоту и ее соли, которые являются причиной мочекаменной болезни, остеохондроза и других заболеваний. Оптимальная норма добавок дрожжевой массы в корм сельскохозяйственных животных составляет от 5 до 10 % от сухих веществ. Дрожжи применяются для пищевых и кормовых целей.

Преимуществами бактерий является высокая скорость роста и способность синтезировать до 80 % белка. Полученный белок содержит много дефицитных аминокислот: метионина и цистеина. Недостатками являются маленькие размеры клеток и низкая их концентрация в культуральной среде, что затрудняет процесс выделения. В некоторых бактериальных липидах могут содержаться токсины. Массовая доля нуклеиновых кислот до 16 %. Используются только для кормовых целей.

Преимуществами водорослей являются высокое содержание полноценного по аминокислотному составу белка, накапливающегося в количестве 65 %, легкое выделение водорослей из культуральной среды, низкое содержание нуклеиновых кислот – 4 % (для сравнения – у высших растений 1…2 %). Водоросли используются для пищевых и кормовых целей.

Мицелиальные грибы традиционно используются в качестве пищевого продукта в странах Африки, в Индии, Индонезии, Китае и др. Накапливают до 50 % белка, по аминокислотному составу приближающегося к белку животного происхождения, богаты витаминами группы В. Клеточные стенки тонкие и легко перевариваются в желудочно-кишечном тракте животных. Массовая доля нуклеиновых кислот составляет 2,5 %.

С 1985 г микробиальный белок используется в пищевой промышленности для изготовления различных продуктов и полуфабрикатов.

В производстве пищевых продуктов рассматриваются три основные формы использования микробного белка:

1) цельная масса (без разрушения клеточных стенок);

2) частично очищенная биомасса (предусматривается разрушение клеточных стенок и удаление нежелательных компонентов);

3) выделенные из биомассы белки (изоляты).

ВОЗ (Всемирная организация здравоохранения) сделала заключение, что белок микроорганизмов можно использовать в продуктах питания, но допустимое количество нуклеиновых кислот, вводимых вместе с белком в диету взрослого человека не должно превышать 2 г в сутки. Введение микробиального белка не вызывает отрицательных последствий, но встречается проявление аллергических реакций, желудочные заболевания и т.д.

Широкое распространение микроорганизмов свидетельствует об их огромной роли в природе. При их участии происходит разложение различных органических веществ в почвах и водоемах, они обусловливают круговорот веществ и энергии в природе; от их деятельности зависит плодородие почв, формирование каменного угля, нефти, многих других полезных ископаемых. Микроорганизмы участвуют в выветривании горных пород и прочих природных процессах.

Многие микроорганизмы используют в промышленном и сельскохозяйственном производстве. Так, хлебопечение, изготовление кисломолочных продуктов, виноделие, получение витаминов, ферментов, пищевых и кормовых белков, органических кислот и многих веществ, применяемых в сельском хозяйстве, промышленности и медицине, основаны на деятельности разнообразных микроорганизмов. Особенно важно использование микроорганизмов в растениеводстве и животноводстве. От них зависит обогащение почвы азотом, борьба с вредителями сельскохозяйственных культур при помощи микробных препаратов, правильное приготовление и хранение кормов, создание кормового белка, антибиотиков и веществ микробного происхождения для кормления животных.

Микроорганизмы оказывают положительное влияние на процессы разложения веществ неприродного происхождения - ксенобиотиков, искусственно синтезированных, попадающих в почвы и водоемы и загрязняющих их.

Наряду с полезными микроорганизмами существует большая группа так называемых болезнетворных, или патогенных, микроорганизмов, вызывающих разнообразные болезни сельскохозяйственных животных, растений, насекомых и человека. В результате их жизнедеятельности возникают эпидемии заразных болезней человека и животных, что сказывается на развитии экономики и производительных сил общества.

Последние научные данные не только существенно расширили представления о почвенных микроорганизмах и процессах, вызываемых ими в окружающей среде, но и позволили создать новые отрасли в промышленности и сельскохозяйственном производстве. Например, открыты антибиотики, выделяемые почвенными микроорганизмами, и показана возможность их использования для лечения человека, животных и растений, а также при хранении сельскохозяйственных продуктов. Обнаружена способность почвенных микроорганизмов образовывать биологически активные вещества: витамины, аминокислоты, стимуляторы роста растений - ростовые вещества и т.д. Найдены пути использования белка микроорганизмов для кормления сельскохозяйственных животных. Выделены микробные препараты, усиливающие поступление в почву азота из воздуха.

Открытие новых методов получения наследственно измененных форм полезных микроорганизмов позволило шире применять микроорганизмы в сельскохозяйственном и промышленном производстве, а также в медицине. Особенно перспективно развитие генной, или генетической, инженерии. Ее достижения обеспечили развитие биотехнологии, появление высокопродуктивных микроорганизмов, синтезирующих белки, ферменты, витамины, антибиотики, ростовые вещества и другие, необходимые для животноводства и растениеводства продукты.

С микроорганизмами человечество соприкасалось всегда, тысячелетия даже не догадываясь об этом. С незапамятных времен люди наблюдали брожение теста, готовили спиртные напитки, сквашивали молоко, делали сыры, переносили различные заболевания, в том числе эпидемические. Свидетельством последнего в библейских книгах служит указание о повальной болезни (вероятно, чуме) с рекомендациями сжигать трупы и делать омовения.

Однако до середины прошлого века даже никто не представлял, что разного рода бродильные процессы и заболевания могут быть следствием деятельности ничтожно малых существ.


Главным звеном биотехнологического процесса, определяющим всю его сущность, является биологический объект, способный осуществлять определенную модификацию исходного сырья и образовывать тот или иной необходимый продукт. В качестве таких объектов биотехнологии могут выступать клетки микроорганизмов, животных и растений, трансгенные животные и растения, а также многокомпонентные ферментные системы клеток и отдельные ферменты.

Основой большинства современных биотехнологических производств до сих пор все еще является микробный синтез, т. е. синтез разнообразных биологически активных веществ с помощью микроорганизмов. К сожалению, объекты растительного и животного происхождения в силу ряда причин еще не нашли столь широкого применения.

Независимо от природы объекта, первичным этапом разработки любого биотехнологического процесса является получение чистых культур организмов (если это микробы), клеток или тканей (если это более сложные организмы – растения или животные). Многие этапы дальнейших манипуляций с последними (т.е. с клетками растений или животных), по сути дела, являются принципами и методами, используемыми в микробиологических производствах. И культуры микробных клеток, и культуры тканей растений и животных с методической точки зрения практически не отличаются от культур микроорганизмов.

Мир микроорганизмов крайне разнообразен. В настоящее время

относительно хорошо охарактеризовано (или известно) более 100 тысяч различных их видов. Это в первую очередь прокариоты (бактерии, актиномицеты, риккетсии, цианобактерии) и часть эукариот (дрожжи, нитчатые грибы, некоторые простейшие и водоросли). При столь большом разнообразии микроорганизмов весьма важной, а зачастую и сложной, проблемой является правильный выбор именно того организма, который способен обеспечить получение требуемого продукта, т. е. служить промышленным целям. Микроорганизмы делятся на промышленные и непромышленные, это те микроорганизмы, которые используются в промышленном производстве – промышленные, а те, которые не используются, – непромышленные.

Основой промышленного производства являются немногочисленные, но глубоко изученные группы микроорганизмов, служащих модельными объектами при исследованиях фундаментальных жизненных процессов. Все остальные микроорганизмы генетиками, молекулярными биологами и генными инженерами не изучались совсем или изучались в очень ограниченной степени. К числу первых относятся кишечная палочка (E. coli), сенная палочка (Bac. subtilis) и пекарские дрожжи (S. cerevisiae).

Во многих биотехнологических процессах используется ограниченное число микроорганизмов, которые классифицируются как GRAS («generally recognized as safe» обычно считаются безопасными). К таким микроорганизмам относят бактерии Bacillus subtilis, Bacillus amyloliquefaciens, другие виды бацилл и лактобацилл, виды Streptomyces. Сюда также относят виды грибов Aspergillus, Penicillium, Mucor, Rhizopus и дрожжей Saccharomyces и др. GRAS-микроорганизмы непатогенные, нетоксичные и в основном не образуют антибиотики, поэтому при разработке нового биотехнологического процесса следует ориентироваться на данные микроорганизмы, как базовые объекты биотехнологии.

Микробиологическая промышленность сегодня использует тысячи штаммов из сотен видов микроорганизмов, которые первично были выделены из природных источников на основании их полезных свойств, а затем (в большинстве своем) улучшены с помощью различных методов. В связи с расширением производства и ассортимента выпускаемой продукции в микробиологическую промышленность вовлекаются все новые и новые представители мира микробов. Следует отдавать себе отчет, что в обозримом будущем ни один из них не будет изучен в той же степени, как E.coli и Bac.subtilis. И причина этого очень простая – колоссальная трудоемкость и высокая стоимость подобного рода исследований.

Наиболее часто биотехнологическими объектами являются:

Бактерии и цианобактерии;

Водоросли;

Простейшие;

Культуры клеток растений и животных;

Растения – низшие (анабена-азолла) и высшие – рясковые.

Субклеточные структуры (вирусы, плазмиды, ДНК).

Бактерии и цианобактерии

Биотехнологические функции бактерий разнообразны.

Уксуснокислые бактерии, роды Gluconobacter и Acetobacter.

Грамотрицательные бактерии, превращающие этанол в уксусную кислоту, а уксусную кислоту в углекислый газ и воду.

Представители рода Bacillus - B.subtilis B.thuringiensis используются для получения пробиотиков, веществ, оказывающих антибиотическое действие на другие микроорганизмы, а также на насекомых (B.thuringiensis). Относятся к грамположительным бактериям, образующим эндоспоры.

B.subtilis - строгий аэроб, а B.thuringiensis может жить и в анаэробных условиях.

Анаэробные, образующие споры бактерии представлены родом Clostridium. C.acetobutylicum сбраживает сахара в ацетон, этанол, изопропанол и n-бутанол (ацетобутаноловое брожение), другие виды могут также сбраживать крахмал, пектин и различные азотсодержащие соединения.

К молочнокислым бактериям относятся представители родов Lactobacillus, Leuconostoc и Streptococcus, которые не образуют спор, грамположительны и нечувствительны к кислороду.

Гетероферментативные бактерии рода Leuconostoc превращают углеводы в молочную кислоту, этанол и углекислый газ.

Гомоферментативные бактерии рода Streptococcus продуцируют только молочную кислоту.

Представители рода Lactobacillus дают наряду с молочной кислотой ряд разнообразных продуктов.

Представитель рода Corynebacterium, неподвижные грамположительные клетки С.glutamicum служит источником лизина и глютамата натрия.

Другие виды коринебактерий используются для микробного выщелачивания руд и утилизации горнорудных отходов.

Широко используется такое свойство некоторых бактерий, как диазотрофность , то есть способность к фиксации атмосферного азота.

Выделяют 2 группы диазотрофов:

Симбионты: без корневых клубеньков (в основном лишайники), с корневым клубеньками (бобовые);

Свободноживущие: гетеротрофы (азотобактер, клостридиум, метилобактер), автотрофы (хлоробиум, родоспириллум и амебобактер).

Бактерии также используются в генноинженерных целях.

Цианобактерии обладают способностью к азотфиксации, что делает их весьма перспективными продуцентами белка. В цитоплазме клеток откладывается продукт, близкий к гликогену.

Такие представители цианобактерий, как носток, спирулина, триходесмиум съедобны и непосредственно употребляются в пищу. Носток образует на бесплодных землях корочки, которые разбухают при увлажнении. В Японии местное население использует в пищу пласты ностока, образующиеся на склонах вулкана и называет их ячменным хлебом Тенгу (Тенгу - добрый горный дух).

Спирулина (Spirulina platensis) происходит из Африки - района озера Чад.

Spirulina maxima растет в водах озера Тескоко в Мексике. Еще ацтеки собирали ее с поверхности озер и употребляли в пищу.

Из спирулины делали галеты представлявшие собой высушенную массу спирулины.

Анализ показал, что в спирулине содержится 65% белков (больше, чем в соевых бобах), 19% углеводов, 6% пигментов, 4% липидов, 3% волокон и 3% золы. Для белков характерно сбалансированное содержание аминокислот. Клеточная стенка этой водоросли хорошо переваривается.

Спирулину можно культивировать в открытых прудах или в замкнутой системе из полиэтиленовых труб. Урожайность очень высокая: получают до 20 г сухой массы водоросли с 1 м 2 в день, это выше, чем выход пшеницы, примерно в 10 раз.

Отечественная фармацевтическая промышленность выпускает препарат «Сплат» на основе цианобактерии Spirulina platensis. Он содержит комплекс витаминов и микроэлементов и применяется как общеукрепляющее и иммуностимулирующе средство

Escherichia coli

Escherichia coli – один из наиболее изученных организмов. За последние пятьдесят лет удалось получить исчерпывающую информацию о генетике, молекулярной биологии, биохимии, физиологии и общей биологии Escherichia coli . Это грамотрицательная, подвижная полочка длиной менее 10 мкм. Средой ее обитания является кишечник человека и животных, но она также может обитать в почве и в воде. Обычно, кишечная палочка не патогенна, но при определенных условиях может вызывать заболевание человека и животных.

Благодаря способности размножаться простым делением на средах, содержащих только ионы Na + , K + , Mg 2+ , Ca 2+ ,NH 4 + , Cl - , HPO 4 2- и SO 4 2- , микроэлементы и источник углерода (например, глюкозу), E . coli стала излюбленным объектом научных исследований.

При культивировании E . coli на обогащенных жидких питательных средах, содержащих аминокислоты, витамины, соли, микроэлементы и источник углерода, время генерации (т.е. время между формированием бактерии и ее следующим делении) в логарифмической фазе роста при температуре 37°С составляет примерно 22 мин.

E . coli можно культивировать как в аэробных (в присутствии кислорода), так и в анаэробных (без кислорода) условиях. Однако для оптимальной продукции рекомбинантных белков E . coli обычно выращивают в аэробных условиях.

Если целью культивирования бактерий в лаборатории является синтез и выделение определенного белка, то культуры выращивают на сложных жидких питательных средах в колбах. Для поддержания нужной температуры и обеспечения достаточной аэрации культуральной среды колбы помещают в водяную баню или термостатируемую комнату и непрерывно встряхивают. Такой аэрации достаточно для размножения клеток, но не всегда – для синтеза определенного белка.

Рост клеточной массы и продукция белка лимитируются не содержанием в питательной среде источников углерода или азота, а содержанием растворенного кислорода: при 20°С оно равно примерно девяти миллионным долям. Это становится особенно важно при промышленном получении рекомбинантных белков. Для обеспечения условий, оптимальных для максимальной продукции белков, конструируют специальные ферментеры и создают системы аэрации.

Для каждого живого организма существует определенный температурный интервал, оптимальный для его роста и размножения. При слишком высоких температурах происходит денатурация белков и разрушение других важных клеточных компонентов, что ведет к гибели клетки. При низких температурах биологические процессы существенно замедляются или останавливаются совсем вследствие структурных изменений, которые претерпевают белковые молекулы.

Исходя из температурного режима, который предпочитают те или иные микроорганизмы, их можно подразделить на термофилы (от 45 до 90°С и выше), мезофиллы (от 10 до 47 °С) и психрофилы (от -5 до 35 °С). микроорганизмы, активно размножающиеся лишь в определенном диапазоне температур, могут быть полезным инструментом для решения различных биотехнологических задач. Например, термофилы часто служат источником генов, кодирующих термостабильные ферменты, которые применяются в промышленных или в лабораторных процессах, а генетически видоизмененные психротрофы используют для биодеградации токсичных отходов, содержащихся в почве и воде, при пониженных температурах.

Помимо E . coli , в молекулярной биотехнологии используют множество других микроорганизмов (табл. 1). Их можно разделить на две группы: микроорганизмы как источники специфических генов и микроорганизмы, созданные генноинженерными методами для решения определенных задач. К специфическим генам относится, например, ген, кодирующий термостабильную ДНК-полимеразу, которая используется в широко применяемой полимеразной цепной реакции (ПЦР). Этот ген был выделен из термофильных бактерий и клонирован в E . coli . ко второй группе микроорганизмов относятся, например, различные штаммы Corynebacterium glutamicum , которые были генетически модифицированы с целью повышения продукции промышленно важных аминокислот.

Таблица 1. Некоторые генетически модифицированные микроорганизмы, использующиеся в биотехнологии.

Acremonium chrysogenum

Bacillus brevis

Bacillus subtilis

Bacillus thuringiensts

Corynebacterium glutamicum

Erwinia herbicola

Escherichia coli

Pseudomonas spp.

Rhizoderma spp.

Trichoderma reesei

Xanthomonas campestris

Zymomonas mobilis

На современном этапе возникает проблема разработки стратегии и тактики исследований, которые обусловили бы с разумной затратой труда извлечь из потенциала новых микроорганизмов все наиболее ценное при создании промышленно важных штаммов-продуцентов, пригодных к использованию в биотехнологических процессах. Классический подход заключается в выделении нужного микроорганизма из природных условий.

1. Из естественных мест обитания предполагаемого продуцента отбирают образцы материала (берут пробы материала) и производят посев в элективную среду, обеспечивающую преимущественное развитие интересующего микроорганизма, т. е. получают так называемые накопительные культуры.

2. Следующим этапом является выделение чистой культуры с дальнейшим дифференциально-диагностическим изучением изолированного микроорганизма и, в случае необходимости, ориентировочным определением его продукционной способности.

Существует и другой путь подбора микроорганизмов-продуцентов – это выбор нужного вида из имеющихся коллекций хорошо изученных и досконально охарактеризованных микроорганизмов. При этом, естественно, устраняется необходимость выполнения ряда трудоемких операций.

Главным критерием при выборе биотехнологического объекта (в нашем случае микроорганизма-продуцента) является способность синтезировать целевой продукт. Однако помимо этого, в технологии самого процесса могут закладываться дополнительные требования, которые порой бывают очень и очень важными, чтобы не сказать решающими. В общих словах микроорганизмы должны:

Обладать высокой скоростью роста;

1.Одноклеточные организмы, как правило, характеризуются более высокими скоростями роста и синтетических процессов, чем высшие организмы. Тем не менее это присуще не всем микроорганизмам. Существуют такие из них (например, олиготрофные), которые растут крайне медленно, однако они представляют известный интерес, поскольку способны продуцировать различные очень ценные вещества.

Утилизировать необходимые для их жизнедеятельности дешевые субстраты;

2. Особое внимание как объекты биотехнологических разработок представляют фотосинтезирующие микроорганизмы, использующие в своей жизнедеятельности энергию солнечного света. Часть из них (цианобактерии и фотосинтезирующие эукариоты) в качестве источника углерода утилизируют СО2, а некоторые представители цианобактерий, ко всему сказанному, обладают способностью усваивать атмосферный азот (т. е. являются крайне неприхотливыми к питательным веществам).

Фотосинтезирующие микроорганизмы перспективны как продуценты аммиака, водорода, белка и ряда органических соединений. Однако пpoгpecca в их использовании вследствие ограниченности фундаментальных знаний об их генетической организации и молекулярно-биологических механизмах жизнедеятельности, по всей видимости, следует ожидать не в скором будущем.

Быть резистентными к посторонней микрофлоре, т. е. обладать высокой конкурентоспособностью.

3. Определенное внимание уделяется таким объектам биотехнологии, как термофильные микроорганизмы, растущие при 60–80° С. Это их свойство является практически непреодолимым препятствием для развития посторонней микрофлоры при относительно не стерильном культивировании, т. е. является надежной защитой от загрязнений. Среди термофилов обнаружены продуценты спиртов, аминокислот, ферментов, молекулярного водорода. Кроме того, скорость их роста и метаболическая активность в 1,5–2 раза выше, чем у мезофилов. Ферменты, синтезируемые термофилами, характеризуются повышенной устойчивостью к нагреванию, некоторым окислителям, детергентам, органическим растворителям и другим неблагоприятным факторам. В то же время они мало активны при обычных температурах. Так, протеазы одного из представителей термофильных микроорганизмов при 200 С в 100 раз менее активны, чем при 750 С. Последнее является очень важным свойством для некоторых промышленных производств.

Все вышеперечисленное обеспечивает значительное снижение затрат на производство целевого продукта.

Селекция

Неотъемлемым компонентом в процессе создания наиболее ценных и активных продуцентов, т. е, при подборе объектов в биотехнологии, является их селекция. А генеральным путем селекции является сознательное конструирование геномов на каждом этапе отбора нужного продуцента. В развитии микробных технологий в свое время сыграли (да и сейчас еще продолжают играть) очень важную роль методы, базирующиеся на селекции спонтанно возникающих измененных вариантов, характеризующихся нужными полезными признаками. При таких методах обычно используется ступенчатая селекция: на каждом этапе отбора из популяции микроорганизмов отбираются наиболее активные варианты (спонтанные мутанты), из которых на следующем этапе отбирают новые, более эффективные штаммы.

Процесс селекции наиболее эффективных продуцентов значительно ускоряется при использовании метода индуцированного мутагенеза.

В качестве мутагенных воздействий применяются УФ, рентгеновское и гамма-излучения, определенные химические вещества и др. Однако и этот прием также не лишен недостатков, главным из которых является его трудоемкость и отсутствие сведений о характере изменений, поскольку экспериментатор ведет отбор по конечному результату.

Таким образом, тенденцией сегодняшнего дня является сознательное конструирование штаммов микроорганизмов с заданными свойствами на основе фундаментальных знаний о генетической организации и молекулярно-биологических механизмах осуществления основных функций организма.

Селекция микроорганизмов для микробиологической промышленности и создание новых штаммов часто направлены на усиление их продукционной способности, т.е. образование того или иного продукта. Решение этих задач в той или иной степени связано с изменением регуляторных процессов в клетке.

Изменения скорости биохимических реакций у бактерий может осуществляться по крайней мере двумя путями. Один из них очень быстрый (реализующийся в течение секунд или минут) заключается в изменении каталитической активности индивидуальных молекул фермента. Второй, более медленный (реализуется в течение многих минут), состоит в изменении скоростей синтеза ферментов. В обоих механизмах используется единый принцип управления системами – принцип обратной связи, хотя существуют и более простые механизмы регуляции активности метаболизма клетки. Самый простой способ регуляции любого метаболического пути основывается на доступности субстрата или наличии фермента. Снижение количества субстрата (его концентрации в среде) приводит к снижению скорости потока конкретного вещества через данный метаболический путь. С другой стороны, повышение концентрации субстрата приводит к стимулированию метаболического пути. Поэтому, независимо от каких-то иных факторов, наличие (доступность) субстрата следует рассматривать как потенциальный механизм любого метаболического пути. Иногда эффективным средством повышения выхода целевого продукта является увеличение концентрации в клетке какого-либо определенного предшественника.

Наиболее распространенным способом регуляции активности метаболических реакций в клетке является регуляция по типу ретроингибирования.

Биосинтез многих первичных метаболитов характеризуется тем, что при повышении концентрации конечного продукта данного биосинтетического пути угнетается активность одного из первых ферментов этого пути. Впервые о наличии такого регуляторного механизма было сообщено в 1953 г. A. Novik и L. Szillard, исследовавшими биосинтез триптофана клетками E. coli. Заключительный этап биосинтеза данной ароматической аминокислоты состоит из нескольких, катализируемых индивидуальными ферментами стадий.

Указанными авторами было обнаружено, что у одного из мутантов E. coli с нарушенным биосинтезом триптофана добавление данной аминокислоты (являющейся конечным продуктом этого биосинтетического пути) резко тормозит накопление одного из предшественников – индол глицерофосфата в клетках. Уже тогда было высказано предположение, что триптофан ингибирует активность какого-то фермента, катализирующего образование индол глицерофосфата. Это было подтверждено.



Поделитесь с друзьями или сохраните для себя:

Загрузка...